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Abstract. A multi reference internally contracted configuration interaction (MRCI) method is used to
generate the potential energy function (PEF) of the excited Ã1A′′ electronic state of HCN molecule. The
analytic representation of the PEF is employed to calculate complex eigenvalues (resonance positions and
widths) by a discrete variable representation (DVR) of the Hamiltonian for the non-rotating (J = 0)
molecule. The computational method used is a variant of the filter-diagonalization technique based on a
recursive polynomial expansion of the absorbing-boundary-conditions (ABC) Green operator. Reasonable
agreement with existing experimental data is found.

PACS. 33.80.Gj Diffuse spectra; predissociation, photodissociation

1 Introduction

The classic experiment of Herzberg and Innes [1,2] on the
VUV absorption bands of HCN and DCN around 190 nm
has stimulated in the past, both semiempirical [3] and
ab initio [4–10] theoretical studies of excited electronic
states of HCN, as well as additional experimental work
[11–14]. While experimentalists seem to be convinced [14]
that all observed transitions can be assigned to a single
excited Ã1A′′ state, theoreticians have repeatedly pointed
out the importance of other nearby electronic states, es-
pecially the 21A′ state [7,8]. Indeed, the predissociation,
which has been observed [1] and later studied experimen-
tally in more detail [12,13], indicates that coupling of two
or more electronic states may be important for the full un-
derstanding of the photoabsorption dynamics. However,
the knowledge of the excited electronic states and of the
non-adiabatic couplings is far from being complete, so that
one is necessarily forced to use various kinds of approxi-
mate treatments.

In the present paper we study the vibrational dynam-
ics on the single adiabatic Ã1A′′ potential energy sur-
face. Moreover, we shall limit ourselves to the geometries
corresponding to the HCN isomer. To this end, ab ini-
tio electronic structure calculations on the level of multi
reference internally contracted configuration interaction
(MRCI) [26], have been performed in order to describe cor-
rectly the region of the HCN potential as well as the bar-
rier separating it from the asymptotic dissociation limit
H+CN(A2Π). The quasi-bound vibrational states (reso-
nances) of the non-rotating (J = 0) molecule have then
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been calculated using the vibrational Hamiltonian in the
discrete variable representation (DVR) [15]. The method
used to find complex eigenvalues (positions and widths)
of the resonances is a combination of ideas contained in
previous works on filter-diagonalization [16], absorbing po-
tentials [17,18] and Chebyshev polynomial expansions of
the Green operator [19–21]. The method was originally
proposed in reference [22] and later successfully applied to
calculations of the vibrational resonances of ground-state
molecules HCO [23], HO2 [24] and H+

3 [25].
In Section 2 we briefly describe our electronic structure

calculations and discuss the main features of the potential
energy function. Section 3 contains a description of the
numerical method used to calculate complex eigenvalues
of the quasi-bound states. Our results and discussion are
presented in Section 4. Finally, Section 5 contains some
concluding remarks.

2 Potential energy function

The three-dimensional adiabatic potential energy func-
tions of the X1Σ+, Ã1A′′ and B̃1A′ have been deter-
mined by extensive ab initio calculations. We have used
the state averaged complete active space self-consistent
field (CASSCF) approach with equal weights for all three
states, with all valence molecular active orbitals. The
CASSCF calculations were followed by an internally con-
tracted multi reference configuration interaction (MRCI).
The reference wave functions were selected according to
a coefficient threshold of 0.01 in the CASSCF configura-
tion expansion. All valence electrons were correlated. In
all computations the spdf for C and N atoms and spd
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Fig. 1. Contour representation of the potential energy surface
of the Ã1A′′ excited state of the HCN molecule as a function
of RCH and θHCN for fixed value of RCN = 2.2a0.

for H aug-cc-pVDZ basis of contracted Cartesian Gaus-
sian functions of Dunning et al. [27] was employed. All
electronic structure calculations were performed with the
MOLPRO program package [26]. In the present contri-
bution only the results related to the first electronically
excited state of Ã1A′′ symmetry with a leading electronic
configuration: 5(a′)26(a′)21(a′′)7(a′) correlating with the
configuration: 5σ21π32π at linearity are presented. We
have calculated about 500 ab initio points of the Ã1A′′

potential energy function. The distance RCH varied from
1.4a0 to 8.0a0 with ∆RCH = 0.1a0, the distance RCN

varied between 1.8a0 to 3.0a0 with ∆RCN = 0.1a0, and
the ĤCN angle θHCN varied in the interval [90◦, 180◦]
with ∆θHCN = 5◦. Three one-dimensional polynomial
interpolations were then used to obtain the potential en-
ergy function on a grid of about 16 500 points. The value
of the potential energy function at any required point is
then easily determined by a 3D spline fit. The analytic
form can be obtained on request. The study of the non-
adiabatic coupling effects for states forming conical in-
tersections at near linear geometries have not yet been
treated. We would expect however, that such a coupling
does not influence the low lying predissociating vibrational
states of the first electronically excited state of HCN.

Figure 1 shows a contour plot and Figure 2 a three-
dimensional plot of the Ã1A′′ potential energy surface as a
function of RCH and θHCN for fixed value of RCN = 2.2a0.
One can clearly distinguish the region of the HCN poten-
tial well, the region of the saddle point and the asymptotic
region corresponding to H+CN(A2Π) dissociation limit.
The minimum of the potential well Vmin = −93.0367 a.u.
is located at RCHmin = 2.1a0, RCNmin = 2.47a0 and
θHCNmin = 123◦. These may be compare with the exper-
iment values of Herzberg: RCHmin = 2.154a0, RCNmin =
2.4509a0 and θHCNmin = 125◦. The saddle point, which
was calculated to be 4398 cm−1 above the minimum cor-
responds to: RCHsaddle = 3.0a0, RCNsaddle = 2.38a0 and
θHCNsaddle = 123◦. Thus for energies less than the saddle
point energy, dissociation is possible only through tunnel-
ing. In the asymptotic region starting from RCH of about

Fig. 2. 3D representation of the potential energy surface of
the Ã1A′′ excited state of the HCN molecule as a function of
RCH and θHCN for fixed value of RCN = 2.2a0.

5.0a0, we could also observe the A2Π CN potential en-
ergy function for all angular coordinates. The minimum
of this asymptotic diatomic potential is 1561 cm−1 above
the HCN minimum and corresponds to RCN = 2.3a0.

We note also, that at linear geometries (θHCN = 180◦),
due to the existence of a conical intersection, the Ã1A′′

state correlates for small RCH distances with the 11Σ−

state, while for large RCH it correlates to one of the de-
generate components of the A1Π singlet state (see, for ex-
ample, [7]). In addition, near the bond angle θHCN = 90◦
there is a pseudo-Jahn-Teller intersection [7,8] between
the Ã1A′′ and B1A′ surfaces. In the present work, how-
ever, all non-adiabatic effects were neglected and the dy-
namics will be studied only on the single Ã1A′′ potential
energy surface.

3 Selective calculation of resonances

Given the system Hamiltonian Ĥ one can introduce a
complex absorbing potential iW (ReW (R) → ∞ for the
scattering coordinate R → ∞) and consider the non-
Hermitian operator:

Ĥ(λ) = Ĥ − iλŴ (3.1)

with a positive coupling strength λ. The coordinate de-
pendent absorbing potential iW is usually taken to be
non-zero only in the asymptotic region, where all physi-
cal interactions between the separated components of the
system are zero. The resonances, which are rigorously de-
fined as Siegert eigenvalues [28] or complex poles of the
Green’s function, could be obtained from the families of
eigenvalues Zm(λ) = εm− iΓm/2 of the Hamiltonian (3.1)
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which converge to them as λ → 0 [18]. Actually, for
any finite basis representation an optimal value of λ ex-
ists which roughly corresponds to the stationary condition
dZm(λ)/dλ = 0 (for more details see [17,18,23] and refer-
ences therein).

Let us now describe the procedure of filter diago-
nalization, which generates a small-size basis appropri-
ate for obtaining the eigenvalues in a given energy win-
dow: Emin < ReZm(λ) < Emax. The essential idea
[16,23] is to act with an operator function f [E − Ĥ(λ)]
onto a generic initial wavepacket χ for a sequence of val-
ues Emin = E1 < E2 < ... < EL = Emax:

Ψi = f [Ei − Ĥ(λ)]χ . (3.2)

The operator function should be chosen in such a way
that it filters out only the eigenstates from the initial
wavepacket with eigenvalues close to Ei. In the case of
bound states a very convenient choice [22,23] is the spec-
tral density operator, i.e. f(E−Ĥ) = ImĜ+ = πδ(E−Ĥ).
In any practical realization of this operator the Dirac
delta-function is represented by a function of finite width
which is highly peaked at the eigenvalues and hence acts as
a filter. Generalizing this idea to the case of non-Hermitian
Hamiltonian [23] we construct our window basis func-
tions as:

Ψi = Im
1

Ei − Ĥ(λ)
χ . (3.3)

Taking χ to be real leads to the real Ψi’s. It is quite ob-
vious that the poles of the Green’s function in (3.3) that
are close in energy to an Ei will have a dominant contri-
bution to the Ψi (see [23]); as such the small subspace of
the window functions Ψi will represent the corresponding
small eigensubspace of the Ĥ(λ).

In order to calculate the r.h.s. of (3.3) we apply the re-
cursion expansion of the absorbing-boundary-conditions
(ABC)Green operator [21,22] which enables generation of
all the window functions simultaneously from the same it-
erative procedure. Namely, with the choice of the complex
absorbing potential in the form

ı̂W = i∆H[sinϕ sinh γ̂ + i cosϕ(1− cosh γ̂)] (3.4)

the following expansion has been proven to hold:

(E − Ĥ + iŴ )−1 =
1

i∆H

∞∑
n=0

(2− δn0)e−inϕ

×Qn(Ĥnorm; γ̂) [sin(ϕ− iγ̂)]−1
. (3.5)

The operators Qn(Ĥnorm; γ̂), n = 0, 1, 2..., are defined
recursively as

Qn+1(Ĥnorm; γ̂) = e−γ̂ [2ĤnormQn(Ĥnorm; γ̂)

− e−γ̂Qn−1(Ĥnorm; γ̂)] , (3.6)

with the initial conditions

Q0(Ĥnorm; γ̂) = Î , Q1(Ĥnorm; γ̂) = e−γ̂Ĥnorm . (3.7)

Here Î is the identity operator and the Hamiltonian Ĥ is
scaled according to the formula

Ĥnorm =
Ĥ − H̄
∆H

, (3.8)

where H̄ = (Hmax + Hmin)/2, ∆H = (Hmax − Hmin)/2,
and Hmax and Hmin are respectively an upper and lower
estimations of the maximum and minimum eigenvalues of
the finite basis representation of the Hamiltonian Ĥ, so
that the spectral range of Ĥnorm belongs to [−1, 1].

The expansion of the Green operator defined by (3.5)
has a desirable factorization of the energy dependence
which comes through the phase ϕ as

ϕ = arccos
(
E − H̄
∆H

)
. (3.9)

The dimensionless operator γ̂ in (3.6) defines the damping
factor e−γ̂ . In practice it should be chosen in accordance
with the proper choice for the absorbing potential Ŵ ,
which in turn has to be zero inside the strong interaction
region and rise slowly in the asymptotic region where all
the physical interactions are negligible. As such, in the
application presented in Section 4, γ̂ will be taken to be
of the form

γ(R) =


0 R < R1

γ0

(
R−R1

R2 −R1

)2

R1 < R < R2

(3.10)

with γ0 being the strength constant, and segment [R1, R2]
representing the asymptotic region of relevant radial co-
ordinate.

In the γ̂ → 0 limit the operators Qn(Ĥnorm; γ̂) tend to
Chebyshev polynomials Tn(Ĥnorm) and the relation (3.5)
is converted into the known formal Chebyshev polynomial
expansion of the Green operator (E− Ĥ+ i0+)−1 [19,20].

We now substitute (3.5) in (3.3), with additional
restriction that the wavepacket χ has no overlap with the
absorbing region where γ̂ 6= 0, so that

1
sin(ϕ− iγ̂)

χ =
1

sinϕ
χ . (3.11)

Our window basis functions defined by (3.3) then become

Ψi =
−1

∆Hsinϕ

∞∑
n=0

(2− δn0)cos(nϕ)ξn , (3.12)

where the vectors ξn are given by the following three
term recursion relation,

ξn+1 = e−γ̂ [2Ĥnormξn − e−γ̂ξn−1]

ξ0 = χ , ξ1 = e−γ̂Ĥnormξ0. (3.13)

After Schmidt orthogonalization and eventual elimination
of the linear dependence among the functions Ψi, a fi-
nal set of orthonormal window-basis functions Ψ̄i (i =
1, 2, ... L̄, L̄ ≤ L) is obtained. This basis is then used to
construct a small-size (L̄× L̄) complex symmetric Hamil-
tonian matrix representing Ĥ(λ). Finally, this matrix is
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then diagonalized by standard methods in order to obtain
complex eigenvalues with real parts in the desired energy
window [Emin, Emax].

We note that, as defined by relation (3.4), our effective
absorbing potential is energy-dependent ı̂W = ı̂W (E).
However, the width of the energy window Emax − Emin

is much smaller than the spectral range ∆H, so that this
dependence is effectively reduced. Namely, for each energy
window the midpoint energy Ē = (Emax+Emin)/2, can be
chosen to define the energy independent absorbing poten-
tial W (Ē) to be used in the construction of the complex
Hamiltonian matrix.

Strictly speaking, the recursion procedure, as it is de-
fined above, generates a basis appropriate for diagonaliza-
tion of the Hamiltonian Ĥ(λ = 1), while the strength of
the absorbing potential is defined by the parameter γ0 of
the damping potential (3.10). Therefore, one would have
to perform many expensive calculations for different γ0’s
in order to determine the optimal parameter γ̄0 from a sta-
tionary condition: dZm/dγ0|γ0=γ̄0 ≈ 0. Instead, it is much
more efficient to consider a family of complex Hamiltoni-
ans Ĥ(λ) = Ĥ − iλW (Ē). After a small window basis is
obtained for some reasonable γ0, a series of diagonaliza-
tions for various values of λ around λ = 1 can be per-
formed using the same basis. The optimal values of λ can
than be determined by looking for stationary points on
the trajectories Zm(λ) in the complex energy plane. This
procedure greatly reduces numerical effort in finding op-
timized resonance parameters.

4 Computational details and results

The vibrational Hamiltonian of the non-rotating (J = 0)
HCN molecule in atom-diatom Jacobi coordinates is

Ĥ =
−~2

2mH,CN

1
R

∂2

∂R2
R− ~2

2mCN

1
r

∂2

∂r2
r

+
~2

2

(
1

mH,CNR2
+

1
mCNr2

)
ĵ2 + V (R, r, θ) (4.1)

where R is the radial distance from H to the center of mass
of CN; r is the CN internuclear distance; θ is the angle
between R and r; ĵ is the CN angular momentum operator
and mH,CN and mCN are the usual reduced masses.

The Hamiltonian (4.1), the complex absorbing poten-
tial (3.4), and the damping potential (3.10) are repre-
sented in a DVR basis.

The basis set parameters corresponding to the main
calculation are the following.

• For R (the dissociation coordinate) we used NR = 80
equidistant sinc-function DVR [29,30] points in the in-
terval [1.7, 9]a0.
• For the r coordinate we used Nr = 70 sinc-function

DVR points in the interval [1.8, 3]a0.
• For the angular variable we used Nθ = 80 Gauss-

Legendre-quadrature DVR points.

The direct product basis of sizeNR×Nr×Nθ = 448 000
is further contracted by retaining only grid points which
represent the potential surface in the available range of
internal coordinates: 1.4a0 < RCH < 8a0, 90◦ < θ < 180◦
and in addition satisfy the cutoff criterion V (R, r, θ) <
Vcut = 40 000 cm−1 (the zero of energy is set at the min-
imum of the HCN potential well). The number of DVR
points, surviving after the cutoff procedure was NDVR ∼
150 000. The damping potential has been taken in the form
of (3.10) with R = RCH, RCH1 = 5a0 , RCH2 = 8a0 and
various values of γ0 around γ0 = 0.05.

For the most time consuming computational part in
the iterative procedure, the matrix-vector multiplication,
we used an algorithm which takes advantage of the sparse-
ness of the DVR Hamiltonian, similar to the one described
in reference [30]

Many test calculations corresponding to different ba-
sis set parameters NDVR, Vcut and γ0 were carried out in
order to assure that the results obtained were converged
to better than 1 cm−1 for the positions and about 20% for
the widths for most resonances.

In order to cover the energy interval of interest, three
overlapping energy windows: [0, 4000], [3000, 6000] and
[5000, 8000] cm−1 have been used with around 100 win-
dow basis functions (3.12) in each of them. The number
of iterations needed for obtaining the above stated de-
gree of convergence was 10 000. Each calculation required
about 3 hours CPU time on a IBM RS 6000 workstation.

After a window basis is generated and Schmidt or-
thogonalized a parametric family of complex-symmetric
Hamiltonians Ĥ(λ) defined by (3.1) is diagonalized yield-
ing a set of trajectoriesZm(λ) in the complex energy plain.
This last step takes typically less than 1% of total CPU
time.

The trajectories Zm(λ) are drawn in the complex en-
ergy plane. For a given trajectory a stationary point (typ-
ically corresponding to a cusp or to a center of the maxi-
mum curvature of a loop) is used to extract the resonance
parameters. Two examples are shown in Figures 3 and 4.

Results of calculations are given in Table 1. The assign-
ments (v1, v2, v3) in terms of the harmonic quantum num-
bers in the CH stretch, the HCN bend and the CN stretch
are tentative for higher states. In particular, doubts might
be raised about our assignment of the (0, 5, 0) state. The
accuracy of our calculations for (0, n, 0) series deterio-
rates progressively with n. So it is a little surprising
that a difference between theory and experiment is much
smaller for n = 5 than for n = 3 or 4. We do not be-
lieve that this to be of great significance. It is possible
that non adiabatic effects, which are not taken account
of in the present calculations, might affect the (0, 5, 0)
and more highly excited states. Also listed are the po-
sitions of levels as derived from experimental data [1] on
Ã(0, v2, v3)1 − X̃(0, 00, 0) transitions. Reasonable agree-
ment is found between the calculated resonance positions
(real parts of the complex eigenvalues) and experimen-
tal data corresponding to (0, v2, 0) and (0, v2, 1) progres-
sions. The resonance widths (imaginary parts of the com-
plex eigenvalues) of these quasi-bound states is also in
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Fig. 3. Trajectory Z(λ) of a complex
eigenvalue of Hamiltonian (3.1). The lo-
cation of the (1, 1, 0) resonance corre-
sponds to the cusp point.

Table 1. Real (ReE) and imaginary (ImE) parts of reso-
nance eigenvalues (in cm−1) of the non-rotating (J = 0)
HCN molecule in Ã1A′′ state. The real parts (resonance po-
sitions) are shown relative to the position of (0, 0, 0) state at
2560.95 cm−1 above the minimum of the Ã1A′′ potential. Ex-
perimental values for the positions (EXP) are from reference
[1]. Quantum numbers (v1, v2, v3) correspond to HC stretch,
the bend and CN stretch. A.B(−C) stands for A.B × 10−C .

state (v1, v2, v3) ReE ImE EXP

1 (0, 0, 0) 0 −9.23(−8) 0

2 (0, 1, 0) 948.7 −9.78(−6) 938

3 (0, 0, 1) 1497.5 −1.17(−3) 1493

4 (0, 2, 0) 1891.3 −6.68(−4) 1858

5 (1, 0, 0) 2222.3 −0.688

6 (0, 1, 1) 2431.4 −0.120 2428

7 (0, 3, 0) 2823.7 −4.52(−2) 2755

8 (0, 0, 2) 2981.0 −0.393

9 (1, 1, 0) 3066.1 −3.78

10 (0, 2, 1) 3356.7 −0.829 3342

11 (0, 4, 0) 3771.2 −4.52 3626

12 (1, 0, 1) 3857.8 −42.5

13 (0, 1, 2) 3904.1 −67.1

14 (1, 2, 0) 3942.1 −8.25

15 (0, 3, 1) 4281.3 −5.25 4233

16 (0, 5, 0) 4453.0 −1.17 4460

17 4628.2 −49.1

18 4742.0 −50.4

19 4796.7 −19.5

20 4861.4 −8.85

21 5190.0 −38.7

22 5240.8 −19.2

23 5371.0 −14.3

qualitative agreement with findings of reference [1] where
the exceptional stability of the (0, v2, 0) states was ob-
served.

Table 2 shows a comparison between different exper-
iments and calculations for the fundamental transitions.
The present anharmonic wavenumbers are found to be
in a good agreement with the experimental data for the
bending and CN stretching. We have obtained the fol-
lowing wavenumbers ν̃2 = 948 cm−1 ∈ [940, 959] and
ν̃3 = 1497 cm−1 ∈ [1493, 1506]. However, an estimation
of the ν̃1 = 3160 cm−1 frequency by Innes and Bickel
based on the DCN isotope measurements is not supported
by the present calculations, which give ν̃1 = 2222 cm−1.
The two reported theoretical calculations, based on a
three dimensional potential energy functions [6,10] yield
ν̃1 = 2351 cm−1 and ν̃1 = 2144 cm−1 which are relatively
close to our result. Obviously the energy of this level is
strongly influenced by the shape and height of the barrier
along the dissociation path.

Our calculations predict that state (1, 0, 0) is relatively
stable in spite the fact that it has not been observed
in experiments [1]. Possible reasons could be unfavorable
Franck-Condon factors and/or presence of other predisso-
ciation mechanisms.

In the experimental work [12] the radiative lifetimes
of the states corresponding to low-J components of the
(0, 1, 0)0 and (0, 2, 0)0 levels have been measured to be,
respectively 136 ns and 9 ns. These values correspond to
imaginary parts of complex energies of 1.9 × 10−5 cm−1

and 6.6 × 10−4 cm−1, which are, especially in the sec-
ond case, in fairly good agreement with our results from
Table 1. We note however, that authors of reference [12]
tentatively assigned the measured lifetimes to different
predissociation mechanisms including also the spin-orbit
coupling with the 13A′ state.
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Fig. 4. Trajectory Z(λ) of a complex
eigenvalue of Hamiltonian (3.1). The
location of the (0, 1, 2) resonance cor-
responds to the center of the highest
curvature on the loop.

Table 2. Comparison between experiments and various calculations of anharmonic vibrational wavenumbers (in cm−1). c1:
one-dimensional analysis (Peric et al.) [7,8]; c2: two-dimensional analysis (Peric et al.) [7,8]; c3: CISD potential with 92 CI
(Schaefer) [6]; c4: CISD potential+Davidson correction (Schaefer) [6]; c5: MRCI potential (Botschwina et al.) [10]; e1: experiment:
analysis from DCN (Bickel and Innes) [11]; e2: experiment: abstract of the original paper by Herzberg [1]; e3: experiment:
Herzberg [2].

state c1 c2 c3 c4 c5 e1 e2 e3 our calculation

(010) 1030 976 954 956 959 949 940.6 948

(001) 1700 1675 1596 1507 1497 1520 1506 1495 1497

(100) 2435 2300 2478 2351 2144 3160 2222

Fig. 5. The density of resonance states ob-
tained from the data in Table 1 using the
equation (4.2).
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Having calculated the resonance poles, the resonance
density of states can be constructed by summing over
these poles and assuming the Lorentzian contributions:

ρ(E) =
∑
n

Γn/2π
(E − εn)2 + Γ 2

n/4
· (4.2)

Figure 5 shows the resonance density of states obtained
by using data from Table 1 and equation (4.2).

5 Conclusion

For highly excited quasi-bound states, the accuracy of the
results may be affected by our neglect of possible tunnel-
ing to the HNC isomer and non-adiabatic coupling with
the higher electronic states. However the present results
for the low lying quasi-bound states of HCN in the ex-
cited electronic state Ã1A′′ are in a good agreement with
experiments and confirm the validity of the approxima-
tions used, the accuracy of the potential energy function
and the efficiency of the dynamical method.

The variant of the filter diagonalization method used,
which includes the complex absorbing potentials and
recursive polynomial expansion techniques, has proved
to be successful in treating predissociative dynamics of
non-linear triatomic systems. As in previous applications
[23–25], this method provides precise resonance positions
and reasonably good estimates of the resonance widths.
It can be easily generalized to treat additional degrees of
freedom, such as for example, rotating triatomics or poly-
atomic molecules.

This work was supported by the IDRIS (Institut du Développe-
ment et des Ressources en Informatique Scientifique) center
and the CCR (Centre de Calcul de Recherche de Jussieu). E.
Soares Barbosa wishes also to thank Reinhard Schinke for a
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